The Impacts of the Ionospheric Observable and Mathematical Model on the Global Ionosphere Model

نویسندگان

  • Wenfeng Nie
  • Tianhe Xu
  • Adria Rovira-Garcia
  • J. Miguel Juan Zornoza
  • Jaume Sanz Subirana
  • Guillermo Gonzalez-Casado
  • Wu Chen
  • Guochang Xu
چکیده

A high-accuracy Global Ionosphere Model (GIM) is significant for precise positioning and navigating with the Global Navigation Satellite System (GNSS), as well as space weather applications. To obtain a precise GIM, it is critical to take both the ionospheric observable and mathematical model into consideration. In this contribution, the undifferenced ambiguity-fixed carrier-phase ionospheric observable is first determined from a global distribution of permanent receivers. Accuracy assessment with a co-located station experiment shows that the observational errors affecting the ambiguity-fixed carrier-phase ionospheric observables range from 0.10 to 0.35 Total Electron Content Units (TECUs, where 1 TECU = 1016e−/m2 and corresponds to 0.162 m on the Global Positioning System, GPS L1 frequency), indicating that the ambiguity-fixed carrier-phase ionospheric observable is over one order of magnitude more accurate than the carrier-phase leveled-code one (from 1.21 to 3.77 TECUs). Second, to better model the structure of the ionosphere, a two-layer GIM has been built based on the above carrier-phase observable. Preliminary global accuracy evaluation demonstrates that the accuracy of the two-layer GIM is below 1 TECU and about 2 TECUs during low and high solar activity periods. Third, the single-frequency point positioning experiment is adopted to test the ionosphere mitigation effects of the GIMs. Positioning results demonstrate that the single-frequency positioning accuracy can be improved by more than 30% using the undifferenced ambiguity-fixed ionospheric observable-derived two-layer GIM, compared with that using the carrier-phase leveled-code ionospheric observable-based single-layer GIM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps

Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...

متن کامل

Variation of ionospheric slab thickness over South Africa

Ionospheric slab thickness is defined as the ratio of TEC to maximum electron density of the F-region (NmF2), proportional to the square of the F2-layer critical frequency (foF2). It is an important parameter in that it is linearly correlated with scale height of the ionosphere, which is related to electron density profile. It also reflects variation of the neutral temperature. Therefore, ionos...

متن کامل

The detection of 11th of March 2011 Tohoku's TEC seismo-ionospheric anomalies using the Singular Value Thresholding (SVT) method

The Total Electron Content (TEC) measured by the Global Positioning System (GPS) is useful for registering the pre-earthquake ionospheric anomalies appearing before a large earthquake. In this paper the TEC value was predicted using the singular value thresholding (SVT) method. Also, the anomaly is detected utilizing this predicted value and the definition of the threshold value, leading to the...

متن کامل

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

Tomographic Reconstruction of the Ionospheric Electron Density in term of Wavelets

Ionospheric tomography is a method to investigate the ionospheric electron density in two or three dimensions. In this study, the function-based tomographic technique has been used for regional reconstruction of a 3D tomographic model of the ionospheric electron density using the GPS measurements of the Iranian Permanent GPS Network. Two-dimensional Haar wavelets and empirical orthogonal functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018